Automatic segmentation of diatom images for classification.

نویسندگان

  • Andrei C Jalba
  • Michael H F Wilkinson
  • Jos B T M Roerdink
چکیده

A general framework for automatic segmentation of diatom images is presented. This segmentation is a critical first step in contour-based methods for automatic identification of diatoms by computerized image analysis. We review existing results, adapt popular segmentation methods to this difficult problem, and finally develop a method that substantially improves existing results. This method is based on the watershed segmentation from mathematical morphology, and belongs to the class of hybrid segmentation techniques. The novelty of the method is the use of connected operators for the computation and selection of markers, a critical ingredient in the watershed method to avoid over-segmentation. All methods considered were used to extract binary contours from a large database of diatom images, and the quality of the contours was evaluated both visually and based on identification performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Automatic Identification of Diatoms with Circular Shape using Texture Analysis

Diatoms are unicellular microscopic algae found in practically any moist environment. Identification of diatom has application in many disciplines, including ecology, archaeology and forensic science. In recent years, the work has been undertaken for automatic identification of diatom. However, the diatom with circular shape has not yet been considered as the uttermost goal of the research. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microscopy research and technique

دوره 65 1-2  شماره 

صفحات  -

تاریخ انتشار 2004